A Note on the Topologicity of Quantale-Valued Topological Spaces
نویسندگان
چکیده
For a quantale V, the category V-Top of V-valued topological spaces may be introduced as a full subcategory of those V-valued closure spaces whose closure operation preserves finite joins. In generalization of Barr’s characterization of topological spaces as the lax algebras of a lax extension of the ultrafilter monad from maps to relations of sets, for V completely distributive, V-topological spaces have recently been shown to be characterizable by a lax extension of the ultrafilter monad to V-valued relations. As a consequence, V-Top is seen to be a topological category over Set, provided that V is completely distributive. In this paper we give a choice-free proof that V-Top is a topological category over Set under the considerably milder provision that V be a spatial coframe. When V is a continuous lattice, that provision yields complete distributivity of V in the constructive sense, hence also in the ordinary sense whenever the axiom of choice is granted.
منابع مشابه
Weak hyper semi-quantales and weak hypervalued topological spaces
The purpose of this paper is to construct a weak hyper semi-quantale as a generalization of the concept of semi-quantale and used it as an appropriate hyperlattice-theoretic basis to formulate new lattice-valued topological theories. Based on such weak hyper semi-quantale, we aim to construct the notion of a weak hypervalued-topology as a generalized form of the so-called lattice-valued t...
متن کاملQUANTALE-VALUED GAUGE SPACES
We introduce a quantale-valued generalization of approach spaces in terms of quantale-valued gauges. The resulting category is shown to be topological and to possess an initially dense object. Moreover we show that the category of quantale-valued approach spaces defined recently in terms of quantale-valued closures is a coreflective subcategory of our category and, for certain choices of the qu...
متن کاملThe notions of closedness and D-connectedness in quantale-valued approach spaces
In this paper, we characterize local $T_{0}$ and $T_{1}$ quantale-valued gauge spaces, show how these concepts are related to each other and apply them to $mathcal{L}$-approach distance spaces and $mathcal{L}$-approach system spaces. Furthermore, we give the characterization of a closed point and $D$-connectedness in quantale-valued gauge spaces. Finally, we compare all these concepts to each o...
متن کاملA COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES
We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...
متن کاملThe Wijsman structure of a quantale-valued metric space
We define and study a quantale-valued Wijsman structure on the hyperspace of all non-empty closed sets of a quantale-valued metric space. We show its admissibility and that the metrical coreflection coincides with the quantale-valued Hausdorff metric and that, for a metric space, the topological coreflection coincides with the classical Wijsman topology. We further define an index of compactnes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logical Methods in Computer Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2017